

Approved by AICTE and DTE, Goverment of Maharashtra, Affiliated to University of Pune

Department of Electrical Engineering

Course Outcomes (CO) Syllabus Pattern:-2019

Class:-BE

Semester:- I

Sr. No	Subject	Course Outcomes (CO)
1	Power System Operation & Control	 CO1: Summarize angle, voltage and frequency stability in the power system control (UN). CO2: Illustrate various ways of interchange of power between interconnected utilities (AP). CO3: Analyze stability and optimal load dispatch using different techniques (AN). CO4: Select appropriate FACTS devices for stable operation of the system (EV). CO5: Evaluate the stability of the system and suggest the methods to improve it (EV).
2	Advanced Control System	 CO1. Explain compensation networks, common nonlinearities, the concept of state, sampling and reconstruction, and concepts of advanced controls (Understanding) CO2. Determine transfer function from state model (Applying) CO3. Test controllability and observability properties of the system (Evaluating) CO4:Design compensators, state feedback controls, and observers for the system (Creating)
3	Elective-I PLC and SCADA	 CO1. Develop and explain the working of a PLC with the help of a block diagram. CO2. Classify input and output interfacing devices with PLC. CO3.Design PLC based application by proper selection criteria, developing GUI and ladder program. CO4:Execute, debug, and test the programs developed for digital and analog operations. CO5:Develop the architecture of SCADA and explain the importance of SCADA in critical infrastructure. CO6:Describe the SCADA protocols and digital control systems, along with their architecture for automation.

Sr. No	Subject	Course Outcomes (CO)
4	Elective-I Power Quality Management	 CO1: Understand power quality and attribute of power quality CO2: Describe voltage flicker and mitigation of it CO3: Analyze the effect of power system events on voltage sag and its characteristics. CO4: Identify the sources of harmonics and harmonics produced CO5: Select proper method for harmonic mitigation along with methods of power quality monitoring. CO6: Carry out power quality monitoring using power quality analyzers.
5	Elective-I High Voltage Engineering	 CO1: Identify, describe and analyze the breakdown theories of gaseous, solid and liquid materials. CO2: Analyze the occurrence of over voltage and to provide remedial solutions CO3: Describe and use of various methods of generation of high AC, DC, impulse voltage and current. CO4: Demonstrate the methods of measurement of high AC, DC, impulse voltage and current, tests on high voltage equipment and devices CO5: Study design of high voltage laboratory with all safety measures.
6	Elective-I Robotics and Automation	 CO1: differentiate between types of robots based on configuration, method of control, types of drives, sensors used, etc. CO2: apply mathematical modeling of a robot for a specific application with given specifications. CO3: analyze the robot arm dynamics for calculation of torques and forces required for different joints of robots for control of the robot arm. CO4: apply knowledge of Robot for their various applications
7	Elective-II Alternate Energy System	CO1:Analyze the performance of solar thermal and photovoltaic systems. CO2:Determine wind turbine performance. CO3:Explain and evaluate biomass resources in an Indian context. CO4:Illustrate the importance of storage systems. CO5:Analyze the economics of renewable energy sources.
8	Elective-II Electric and Hybrid Vehicle	 CO1: Analyze the Life Cycle Assessment of Li-ion battery. CO2 : Describe the different types of Li-ion charging methods CO3 : Comprehend the knowledge of drivetrain hybridization. CO4 : Evaluate EV motor sizing. CO5 : Classify Battery Recycling methods.
9	Elective-II Special-Purpose Machines	 CO1:Reproduce principal of operation of PMSM, Stepper motor, SRM, Switch reluctance and linear motors. CO2: Develop torque - speed and performance characteristics of above motors. CO3: Enlist application of above motors. CO4: Demonstrate various control strategies.
10	Elective-II HVDC and FACTs	 CO1:Choose a proper FACTS controller for the specific application based on system requirements. CO2:Analyze shunt, series, and combined controllers to explore different benefits. CO3:Compare EHVAC and HVDC systems and to describe various types of DC links. CO4:Describe various methods for the control of HVDC systems and to perform power flow analysis in AC/DC systems.

Sr. No	Subject	Course Outcomes (CO)
11	Project Stage-I	CO1:Define the project problem statement and identify the scope of the project. CO2:Search the appropriate research papers, standards and e-resources and write a literature survey. CO3:Identify tools, techniques, methods, concepts, measuring devices, and instruments required for the project to define the methodology of the project. CO4:Justify the selection of electrical, electronic and mechanical components for the project prototyping CO5:Simulate or develop a system for software or hardware verification. CO6:Write a project report with proper interpretation of results.
12	MOOCs	CO1:Enables the students to directly engage and learn from the best faculty in the country in order to strengthen the fundamentals. CO2:Explore new areas of interest in a relevant field. CO3:Enable self learning initiative in learners CO4:Develop critical thinking to solve complex problems in engineering, science and humanities. CO5:Improve communication skills by interacting with peers and course teachers.
13	Audit Course-VII German Language-I	CO1: Will have the ability of basic communication.CO2: Will have the knowledge of German script.CO3: Will get introduced to reading ,writing and listening skillsCO4: Will develop interest to pursue profession in Indo-German Industry.
14	Engineering Economics-I	CO1:Discuss concepts related to business and its impact on enterprise. CO2:Illustrate time value of money in economic analysis.
15	Sustainability	CO1: Understand different types of environmental pollution problem.CO2: Suggest solutions for sustainable development.CO3: Develop a broader perspective in thinking for sustainable practices by utilizing engineering principle and knowledge

Approved by AICTE and DTE, Goverment of Maharashtra, Affiliated to University of Pune

Department of Electrical Engineering

Course Outcomes (CO)

Syllabus Pattern:-2019

Semester:- II

Sr. No	Subject	Course Outcomes (CO)
1	Switchgear and Protection	 CO1:Understand the fundamentals of protective relaying. CO2:Demonstrate the arc interruption and analyze the RRRV in circuit breakers CO3:Demonstrate the construction and working principle of air brake circuit breakers, SF6 circuit breakers, and a vacuum circuit breaker. CO4:Explain the characteristics of static and digital relays and their applications in power systems. CO5:Apply the differential protection scheme to large transformers, alternators, and induction motors. CO6:Apply distance protection, three stepped protection for transmission line.
2	Advanced Electrical Drives and Control	 CO1: Explain motor load dynamics and multi quadrant operation of drives. CO2: Analyze operation of converter fed and chopper fed DC drives. CO3: Apply different braking methods of D.C. and induction motor drive. CO4: Elaborate vector control for induction motor and BLDC drives. CO5: Elaborate synchronous motor, reluctance motor drive. CO6: Differentiate between classes and duty cycles of motors and select suitable drives in various industrial applications.
3	Digital Control System	 CO1: Analyze digital control system and its stability. CO2: Differentiate between various control systems CO3: Present system in state space format. CO4: Design observer for system. CO5: Understand digital controllers CO6: Elaborate applications such as digital temperature control and position control
4	Restructuring and Deregulation	 CO1: Identify the various institutions in the Indian power sector and explain their role in the Indian power sector . CO2: Explain the various fundamentals of power sector economics CO3: Describe the regulatory process in India and list the steps involved in tariff determination and explain the phases of tariff determination CO4: Describe and explain different power sector restructuring models and explain the concept of energy trading CO5: Explain the types of electricity markets and compare the types of electricity markets. CO6: State different transmission pricing methods and describe and compare various congestion management methods.
5	Smart Grid	CO1: Apply the knowledge to differentiate between Conventional and Smart GridCO2: Describe importance of Supercapacitors.CO3: Identify the need of Smart metering.

Class:-BE

Sr. No	Subject	Course Outcomes (CO)
5	Smart Grid	CO4: Apply the communication technology in smart grid. CO5: Comprehend the issues of micro grid.
6	Sensor Technology	CO1: Understand the characteristics of sensors used for system monitoring and protection.CO2: Interface the various position sensors to microcontrollers.CO3: Demonstrate the characteristics of sensors used for light and image sensing
7	EHV AC Transmission	CO1:Highlight need for EHV ac transmission.CO2:Calculate line and ground parameters.CO3:Enlist problems encountered in EHV transmission.CO4:Describe the effect of electric and magnetic fields on human beings.
8	Illumination Engineering	CO1: Define and reproduce various terms in illumination.CO2: Identify various parameters for illumination system design.CO3: Design indoor and outdoor lighting systems.CO4: Enlist state of the art illumination systems.
9	Electromagnetic Fields	 CO1: Describe time varying Maxwell's equations and their applications in electromagnetic problems CO2: Interpret electric and magnetic field with the help of associated laws CO3: Solve simple electrostatic and magnetic boundary conditions CO4: Determine the relationship between time varying electric and magnetic fields and electromotive force CO5: Solve electromagnetic problems with the help of mathematical tools.
10	Artificial Intelligence and Machine Learning	 CO1: Evaluate Artificial Intelligence (AI) and Machine Learning(ML) methods and describe their foundations. CO2: Demonstrate knowledge of reasoning and knowledge representation for solving real world problems. CO3: Illustrate the construction of learning and expert system Discuss current scope and limitations of AI and societal implications CO4: Distinguish between different types of learning types. CO5: Apply the different supervised, unsupervised and reinforcement learning methods.
11	Project Stage II	 CO1: Identify tools, techniques, methods, concepts, measuring devices, and instruments required for the project to define the methodology of the project CO2: Justify the selection of electrical, electronic and mechanical components for the project prototyping CO3: Select the appropriate testing method for system performance evaluation CO4: Interpret results obtained by simulation, and hardware implementation and decide on further action or write a conclusion CO5: Write a project report and research paper on the project work
12	German Language-II	CO1: Will have the ability of advanced communication.CO2: Will develop reading, writing and listening skills.CO3: Will understand tenses in German Language.CO4: Will develop interest to pursue a German language course
13	Engineering Economics-II	CO1:Apply various techniques for evaluation of engineering projects. CO2:Assess cash flow under risk with varying parameters.
14	GREEN BUILDING	CO1:Design green and sustainable techniques for both commercial and residential buildings. CO2:Design water, lighting, energy efficiency plan using renewable energy sources.

Course Outcomes (CO)
CO3:Explain the principles of building planning, its bylaws and provide facilities for rainwater harvesting CO4:Understand the concepts of green buildings